76 research outputs found

    Theory and computation of higher gradient elasticity theories based on action principles

    Get PDF
    In continuum mechanics, there exists a unique theory for elasticity, which includes the first gradient of displacement. The corresponding generalization of elasticity is referred to as strain gradient elasticity or higher gradient theories, where the second and higher gradients of displacement are involved. Unfortunately, there is a lack of consensus among scientists how to achieve the generalization. Various suggestions were made, in order to compare or even verify these, we need a generic computational tool. In this paper, we follow an unusual but quite convenient way of formulation based on action principles. First, in order to present its benefits, we start with the action principle leading to the well-known form of elasticity theory and present a variational formulation in order to obtain a weak form. Second, we generalize elasticity and point out, in which term the suggested formalism differs. By using the same approach, we obtain a weak form for strain gradient elasticity. The weak forms for elasticity and for strain gradient elasticity are solved numerically by using open-source packages—by using the finite element method in space and finite difference method in time. We present some applications from elasticity as well as strain gradient elasticity and simulate the so-called size effect

    Linear Pantographic Sheets: Existence and Uniqueness of Weak Solutions

    Get PDF
    The well-posedness of the boundary value problems for second gradient elasticity has been studied under the assumption of strong ellipticity of the dependence on the second placement gradients (see, e.g., Chambon and Moullet in Comput. Methods Appl. Mech. Eng. 193:2771–2796, 2004 and Mareno and Healey in SIAM J. Math. Anal. 38:103–115, 2006). The study of the equilibrium of planar pantographic lattices has been approached in two different ways: in dell’Isola et al. (Proc. R. Soc. Lond. Ser. A 472:20150, 2016) a discrete model was introduced involving extensional and rotational springs which is also valid in large deformations regimes while in Boutin et al. (Math. Mech. Complex Syst. 5:127–162, 2017) the lattice has been modelled as a set of beam elements interconnected by internal pivots, but the analysis was restricted to the linear case. In both papers a homogenized second gradient deformation energy, quadratic in the neighbourhood of non deformed configuration, is obtained via perturbative methods and the predictions obtained with the obtained continuum model are successfully compared with experiments. This energy is not strongly elliptic in its dependence on second gradients. We consider in this paper also the important particular case of pantographic lattices whose first gradient energy does not depend on shear deformation: this could be considered either a pathological case or an important exceptional case (see Stillwell et al. in Am. Math. Mon. 105:850–858, 1998 and Turro in Angew. Chem., Int. Ed. Engl. 39:2255–2259, 2000). In both cases we believe that such a particular case deserves some attention because of what we can understand by studying it (see Dyson in Science 200:677–678, 1978). This circumstance motivates the present paper, where we address the well-posedness of the planar linearized equilibrium problem for homogenized pantographic lattices. To do so: (i) we introduce a class of subsets of anisotropic Sobolev’s space as the most suitable energy space E relative to assigned boundary conditions; (ii) we prove that the considered strain energy density is coercive and positive definite in E; (iii) we prove that the set of placements for which the strain energy is vanishing (the so-called floppy modes) must strictly include rigid motions; (iv) we determine the restrictions on displacement boundary conditions which assure existence and uniqueness of linear static problems. The presented results represent one of the first mechanical applications of the concept of Anisotropic Sobolev space, initially introduced only on the basis of purely abstract mathematical considerations

    A 1D continuum model for beams with pantographic microstructure: asymptotic micro-macro identification and numerical results

    Get PDF
    In the standard asymptotic micro-macro identification theory, starting from a De Saint-Venant cylinder, it is possible to prove that, in the asymptotic limit, only flexible, inextensible, beams can be obtained at the macro-level. In the present paper we address the following problem: is it possible to find a microstructure producing in the limit, after an asymptotic micro-macro identification procedure, a continuum macro-model of a beam which can be both extensible and flexible? We prove that under certain hypotheses, exploiting the peculiar features of a pantographic microstructure, this is possible. Among the most remarkable features of the resulting model we find that the deformation energy is not of second gradient type only because it depends, like in the Euler beam model, upon the Lagrangian curvature, i.e. the projection of the second gradient of the placement function upon the normal vector to the deformed line, but also because it depends upon the projection of the second gradient of the placement on the tangent vector to the deformed line, which is the elongation gradient. Thus, a richer set of boundary conditions can be prescribed for the pantographic beam model. Phase transition and elastic softening are exhibited as well. Using the resulting planar 1D continuum limit homogenized macro-model, by means of FEM analyses, we show some equilibrium shapes exhibiting highly non-standard features. Finally, we conceive that pantographic beams may be used as basic elements in double scale metamaterials to be designed in future

    Multiphysics Modeling and Numerical Simulation in Computer-Aided Manufacturing Processes

    Get PDF
    The concept of Industry 4.0 is defined as a common term for technology and the concept of new digital tools to optimize the manufacturing process. Within this framework of modular smart factories, cyber-physical systems monitor physical processes creating a virtual copy of the physical world and making decentralized decisions. This article presents a review of the literature on virtual methods of computer-aided manufacturing processes. Numerical modeling is used to predict stress and temperature distribution, springback, material flow, and prediction of phase transformations, as well as for determining forming forces and the locations of potential wrinkling and cracking. The scope of the review has been limited to the last ten years, with an emphasis on the current state of knowledge. Intelligent production driven by the concept of Industry 4.0 and the demand for high-quality equipment in the aerospace and automotive industries forces the development of manufacturing techniques to progress towards intelligent manufacturing and ecological production. Multi-scale approaches that tend to move from macro- to micro- parameters become very important in numerical optimization programs. The software requirements for optimizing a fully coupled thermo-mechanical microstructure then increase rapidly. The highly advanced simulation programs based on our knowledge of physical and mechanical phenomena occurring in non-homogeneous materials allow a significant acceleration of the introduction of new products and the optimization of existing processes.publishedVersio

    SHEARING TESTS APPLIED TO PANTOGRAPHIC STRUCTURES

    Get PDF
    With the advancements in 3D printing technology, rapid manufacturing of fabric materials with complex geometries became possible. By exploiting this technique, different materials with different structures have been developed in the recent past with the objective of making generalized continuum theories useful for technological applications. So-called pantographic structures are introduced: Inextensible fibers are printed in two arrays orthogonal to each other in parallel planes. These superimposed planes are inter-connected by elastic cylinders. Five differently-sized samples were subjected to shear-like loading while their deformation response was analyzed. Results show that deformation behavior is strong non-linear for all samples. Furthermore, all samples were capable to resist considerable external shear loads without leading to complete failure of the whole structure. This extraordinary behavior makes these structures attractive to serve as an extremely tough metamaterial
    • …
    corecore